James Webb Space Telescope Discovery
Clicking on each image will open the full resolution one. Try it!Clicking on "Raw images" image will yield all the relevant raw images.
Webb Measures the Temperature of a Rocky Exoplanet
Illustration showing what the hot rocky exoplanet TRAPPIST-1 b could look like. TRAPPIST-1 b, the innermost of seven known planets in the TRAPPIST-1 system, orbits its star at a distance of 0.011 AU, completing one circuit in just 1.51 Earth-days. TRAPPIST-1 b is slightly larger than Earth, but has around the same density, which indicates that it must have a rocky composition. Webb’s measurement of mid-infrared light given off by TRAPPIST-1 b suggests that the planet does not have any substantial atmosphere. The star, TRAPPIST-1, is an ultracool red dwarf (M dwarf) with a temperature of only 2566 K and a mass just 0.09 times the mass of the Sun. This illustration is based on new data gathered by Webb’s Mid-Infrared Instrument (MIRI) as well as previous observations from other ground- and space-based telescopes. Webb has not captured any images of the planet. Rocky exoplanet TRAPPIST-1 b (secondary eclipse light curve) Light curve showing the change in brightness of the TRAPPIST-1 system as the innermost planet, TRAPPIST-1 b, moves behind the star. This phenomenon is known as a secondary eclipse. Astronomers used Webb’s Mid-Infrared Instrument (MIRI) to measure the brightness of mid-infrared light. When the planet is beside the star, the light emitted by both the star and the dayside of the planet reach the telescope, and the system appears brighter. When the planet is behind the star, the light emitted by the planet is blocked and only the starlight reaches the telescope, causing the apparent brightness to decrease. Astronomers can subtract the brightness of the star from the combined brightness of the star and planet to calculate how much infrared light is coming from the planet’s dayside. This is then used to calculate the dayside temperature. The graph shows combined data from five separate observations made using MIRI’s F1500W filter, which only allows light with wavelengths ranging from 13.5-16.6 microns to pass through to the detectors. The blue squares are individual brightness measurements. The red circles show measurements that are “binned,” or averaged to make it easier to see the change over time. The decrease in brightness during the secondary eclipse is less than 0.1%. MIRI was able to detect changes as small as 0.027% (or 1 part in 3700). This is the first thermal emission observation of TRAPPIST-1 b, or any planet as small as Earth and as cool as the rocky planets in the Solar System. The observations are being repeated using a 12.8-micron filter in order to confirm the results and narrow down the interpretations. Rocky exoplanet TRAPPIST-1 b (temperature comparison Comparison of the dayside temperature of TRAPPIST-1 b as measured using Webb’s Mid-Infrared Instrument (MIRI) to computer models showing what the temperature would be under various conditions. The models take into account the known properties of the system, including the planet’s size and density, the temperature of the star, and the planet’s orbital distance. The temperature of the dayside of Mercury is also shown for reference. The dayside brightness of TRAPPIST-1 b at 15 microns corresponds to a temperature of about 500 K (roughly 230°C). This is consistent with the temperature assuming the planet is tidally locked (one side facing the star at all times), with a dark-coloured surface, no atmosphere, and no redistribution of heat from the dayside to the nightside. If the heat energy from the star were distributed evenly around the planet (for example, by a circulating carbon dioxide-free atmosphere), the temperature at 15 microns would be 400 K (125°C). If the atmosphere had a substantial amount of carbon dioxide, it would emit even less 15-micron light and would appear to be even cooler. Although TRAPPIST-1 b is hot by Earth standards, it is cooler than the dayside of Mercury, which consists of bare rock and no significant atmosphere. Mercury receives about 1.6 times more energy from the Sun than TRAPPIST-1 b does from its star. Credit: NASA, ESA, CSA, J. Olmsted (STScI), T. P. Greene (NASA Ames), T. Bell (BAERI), E. Ducrot (CEA), P. Lagage (CEA)