James Webb Space Telescope Feed Post


EarlyReleases
Date: 10/2/2023

The COSMOS-Web ring: in-depth characterization of an Einstein ring lensing system at z~2


Morphology of the COSMOS-Web ring in F444W (top row) and F115W (bottom row) bands. From left to right: 3 '' × 3 '' cutouts, best-fit lens model in image plane from sl_fit, residuals from sl_fit, best-fit morphological model of the lens, CW, CE, and the nearby satellite with SourceXtractor++, and its residuals. The PSF FWHM is indicated as a white bar on the bottom left corner of the cutout Abstract: Aims. We provide an in-depth analysis of the COSMOS-Web ring, an Einstein ring at z=2 that we serendipitously discovered in the COSMOS-Web survey and possibly the most distant lens discovered to date. Methods. We extract the visible and NIR photometry from more than 25 bands and we derive the photometric redshifts and physical properties of both the lens and the source with three different SED fitting codes. Using JWST/NIRCam images, we also produce two lens models to (i) recover the total mass of the lens, (ii) derive the magnification of the system, (iii) reconstruct the morphology of the lensed source, and (iv) measure the slope of the total mass density profile of the lens. Results. The lens is a very massive and quiescent (sSFR < 10^(-13) yr-1) elliptical galaxy at z = 2.02 \pm 0.02 with a total mass Mtot(