James Webb Space Telescope Feed Post
Harvard ADS: CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks
Paper abstract: A crucial yet challenging task in galaxy evolution studies is the identification of distant merging galaxies, a task which suffers from a variety of issues ranging from telescope sensitivities and limitations to the inherently chaotic morphologies of young galaxies. In this paper, we use random forests and convolutional neural networks to identify high-redshift JWST CEERS galaxy mergers. We train these algorithms on simulated 3 < z < 5 CEERS galaxies created from the IllustrisTNG subhalo morphologies and the Santa Cruz SAM lightcone. We apply our models to observed CEERS galaxies at 3 < z < 5. We find that our models correctly classify ~60-70\% of simulated merging and non-merging galaxies; better performance on the merger class comes at the expense of misclassifying more non-mergers. We could achieve more accurate classifications, as well as test for the dependency on physical parameters such as gas fraction, mass ratio, and relative orbits, by curating larger training sets. When applied to real CEERS galaxies using visual classifications as ground truth, the random forests correctly classified 40-60\% of mergers and non-mergers at 3 < z < 4, but tended to classify most objects as non-mergers at 4 < z < 5 (misclassifying ~70\% of visually-classified mergers). On the other hand, the CNNs tended to classify most objects as mergers across all redshifts (misclassifying 80-90\% of visually-classified non-mergers). We investigate what features the models find most useful, as well as characteristics of false positives and false negatives, and also calculate merger rates derived from the identifications made by the models.