James Webb Space Telescope Feed Post


Literature
Date: 8/27/2024

Harvard ADS: JWST Thermal Emission of the Terrestrial Exoplanet GJ 1132b


Paper abstract: We present thermal emission measurements of GJ 1132b spanning 5--12 um obtained with the Mid-Infrared Instrument Low-Resolution Spectrometer (MIRI/LRS) on the James Webb Space Telescope (JWST). GJ 1132b is an M-dwarf rocky planet with Teq=584 K and an orbital period of 1.6 days. We measure a white-light secondary eclipse depth of 140+/-17 ppm, which corresponds to a dayside brightness temperature of Tp,dayside= 709+/-31 K using improved star and planet parameters. This measured temperature is only 1 sigma below the maximum possible dayside temperature of a bare rock (i.e., assuming a zero albedo planet with no heat redistribution, Tmax = 746+14/-11 K). The emission spectrum is consistent with a featureless blackbody, which agrees with a wide range of possible surface compositions. By comparing forward models to the dayside emission spectrum, we rule out Earth-thickness (P ~ 1 bar) atmospheres with at least 1% H2O, atmospheres of any modeled thickness (10^-4 -- 10^2 bar) that contain at least 1% CO2, and thick, Venus-like atmospheres (P>~100 bar) with at least 1 ppm CO2 or H2O. We therefore conclude that GJ 1132b likely does not have a significant atmosphere. This finding supports the concept of a universal 'Cosmic Shoreline' given the high level of bolometric and XUV irradiation received by the planet.