James Webb Space Telescope Feed Post
Harvard ADS: Reliable Detections of Atmospheres on Rocky Exoplanets with Photometric JWST Phase Curves
Paper abstract: The distribution of different types of atmospheres and surfaces on rocky planets is one of the major questions in exoplanet astronomy, but there are currently no published unambiguous detections of atmospheres on any rocky exoplanets. The MIRI instrument on JWST can measure thermal emission from tidally locked rocky exoplanets orbiting small, cool stars. This emission is a function of their surface and atmospheric properties, potentially allowing the detection of atmospheres. One technique is to measure day-side emission to search for lower thermal emission than expected for a black-body planet due to atmospheric absorption features. Another technique is to measure phase curves of thermal emission to search for night-side emission due to atmospheric heat redistribution. In this work we compare strategies for detecting atmospheres on rocky exoplanets using these techniques. We simulate secondary eclipse and phase curve observations in the MIRI F1500W and F1280W filters, for a range of surfaces and atmospheres on thirty exoplanets selected for their F1500W signal-to-noise ratio. Our results show that secondary eclipse observations are highly degenerate between surfaces and atmospheres, given the wide range of potential surface albedos. We also show that thick atmospheres can support emission consistent with a black-body planet in these filters. These two results make it difficult to unambiguously detect or rule out atmospheres using their photometric day-side emission, except in a subset of CO_{2}-dominated atmospheres. We suggest that an F1500W phase curve could instead be observed for a similar sample of planets, allowing the unambiguous detection of atmospheres by night-side emission.