James Webb Space Telescope Feed Post


Literature
Date: 10/17/2024

Harvard ADS: Seven wonders of Cosmic Dawn: JWST confirms a high abundance of galaxies and AGNs at z \simeq 9-11 in the GLASS field


Paper abstract: We present JWST/NIRSpec PRISM follow-up of candidate galaxies at z=9-11 selected from deep JWST/NIRCam photometry in GLASS-JWST Early Release Science data. We spectroscopically confirm six sources with secure redshifts at z = 9.52-10.43, each showing multiple emission lines. An additional object is likely at z = 10.66, based on its Lya-break and a single emission feature, while one source is a lower redshift interloper. The sample includes the first JWST-detected candidate at z=10, GHZ1/GLASS-z10, which we confirm at z = 9.875, and the X-ray detected AGN GHZ9 confirmed at z = 10.145. Three objects in our sample, including GHZ9, have EW(CIII])>20A and occupy a region compatible with AGN emission in the EW(CIII]) vs CIV/CIII] diagram. The spectroscopic sample confirms a high abundance of galaxies at z > 9. We measure a number density of z=10 galaxies in the GLASS-JWST ERS field that is a factor of >3 higher than other JWST-based estimates at demagnified rest-frame magnitudes of -21 < Muv < -19. We find that the positions of these galaxies in redshift and angular space are not consistent with all of them being part of a unique progenitor of present-day galaxy clusters. The high density of objects in the GLASS region can be explained either by clustering on large scales or by a superposition of different forming structures of which we observe only the brightest members. By considering all the spectroscopic z=10 sources in the Abell-2744 field, we identify two potential galaxy proto-clusters centered around GHZ9 and JD1, with relative separations between their members of 1-2 pMpc. The potential AGN nature of three of the sources in our sample lends support to a scenario in which the high abundance of bright sources determined by JWST surveys at cosmic dawn may be affected by AGN contribution to their UV luminosity.