James Webb Space Telescope Feed Post


Literature
Date: 10/17/2024

Harvard ADS: BOWIE-ALIGN: JWST reveals hints of planetesimal accretion and complex sulphur chemistry in the atmosphere of the misaligned hot Jupiter WASP-15b


Paper abstract: We present a transmission spectrum of the misaligned hot Jupiter WASP-15b from 2.8--5.2 microns observed with JWST's NIRSpec/G395H grating. Our high signal to noise data, which has negligible red noise, reveals significant absorption by H_2O (4.2\sigma) and CO_2 (8.9\sigma). From independent data reduction and atmospheric retrieval approaches, we infer that WASP-15b's atmospheric metallicity is super-solar (\gtrsim 15\times solar) and its C/O is consistent with solar, that together imply planetesimal accretion. Our GCM simulations for WASP-15b suggest that the C/O we measure at the limb is likely representative of the entire photosphere due to the mostly uniform spatial distribution of H_2O, CO_2 and CO. We additionally see evidence for absorption by SO_2 and absorption at 4.9\mum, for which the current leading candidate is OCS, albeit with several caveats. If confirmed, this would be the first detection of OCS in an exoplanet atmosphere and point towards complex photochemistry of sulphur-bearing species in the upper atmosphere. These are the first observations from the BOWIE-ALIGN survey which is using JWST's NIRSpec/G395H instrument to compare the atmospheric compositions of aligned/low-obliquity and misaligned/high-obliquity hot Jupiters around F stars above the Kraft break. The goal of our survey is to determine whether the atmospheric composition differs across two populations of planets that have likely undergone different migration histories (disc versus disc-free) as evidenced by their obliquities (aligned versus misaligned).