James Webb Space Telescope Feed Post
Harvard ADS: Thorium in Kilonova Spectra: Exploring the Heaviest Detectable Element
Paper abstract: Kilonova spectra provide us with the direct information of r-process nucleosynthesis in neutron star mergers. In this paper, we study the signatures of elements beyond the third r-process peak expected to be produced in neutron-rich ejecta in the photospheric spectra of kilonova. Ra II, Ac III, and Th III are our candidates because they have a small number of valence electrons and low-lying energy levels, which tend to result in strong absorption features. We systematically calculate the strength of bound-bound transitions of these candidates by constructing the line list based on the available atomic database. We find that Th III is the most promising species showing strong transitions at the NIR wavelengths. By performing radiative transfer simulations, we find that Th III produces broad absorption features at ~18000 A in the spectra when the mass ratio of actinides to lanthanides is larger than the solar r-process ratio and the mass fraction of lanthanides is <~ 6\times10^{-4}. Our models demonstrate that the Th feature may be detectable if the bulk of the ejecta in the line-forming region is dominated by relatively light r-process elements with the mixture of a small fraction of very neutron-rich material. Such conditions may be realized in the mergers of unequal-mass neutron stars or black hole-neutron star binaries. To detect the Th absorption features, the observations from the space (such as JWST) or high-altitude sites are important as the wavelength region of the Th features is overlapped with that affected by the strong telluric absorption.